Olfactory bulb glomeruli: external tufted cells intrinsically burst at theta frequency and are entrained by patterned olfactory input.

نویسندگان

  • Abdallah Hayar
  • Sergei Karnup
  • Michael T Shipley
  • Matthew Ennis
چکیده

Glomeruli, the initial sites of synaptic processing in the olfactory system, contain at least three types of neurons collectively referred to as juxtaglomerular (JG) neurons. The role of JG neurons in odor processing is poorly understood. We investigated the morphology, spontaneous, and sensory-evoked activity of one class of JG neurons, external tufted (ET) cells, using whole-cell patch-clamp and extracellular recordings in rat olfactory bulb slices. ET cells have extensive dendrites that ramify within a single glomerulus or, rarely, in two adjacent glomeruli. All ET neurons exhibit spontaneous rhythmic bursts of action potentials (approximately 1-8 bursts/sec). Bursting is intrinsically generated; bursting persisted and became more regular in the presence of ionotropic glutamate and GABA receptor antagonists. Burst frequency is voltage dependent; frequency increased at membrane potentials depolarized relative to rest and decreased during membrane potential hyperpolarization. Spontaneous bursting persisted in blockers of calcium channels that eliminated low-threshold calcium spikes (LTS) in ET cells. ET cells have a persistent sodium current available at membrane potentials that generate spontaneous bursting. Internal perfusion with a fast sodium channel blocker eliminated spontaneous bursting but did not block the LTS. These results suggest that persistent sodium channels are essential for spontaneous burst generation in ET cells. ET cell bursts were entrained to ON stimuli delivered over the range of theta frequencies. Thus, ET cells appear to be tuned to the frequency of sniffing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endogenous GABA and glutamate finely tune the bursting of olfactory bulb external tufted cells.

In rat olfactory bulb slices, external tufted (ET) cells spontaneously generate spike bursts. Although ET cell bursting is intrinsically generated, its strength and precise timing may be regulated by synaptic input. We tested this hypothesis by analyzing whether the burst properties are modulated by activation of ionotropic gamma-aminobutyric acid (GABA) and glutamate receptors. Blocking GABA(A...

متن کامل

Activation of group I metabotropic glutamate receptors enhances persistent sodium current and rhythmic bursting in main olfactory bulb external tufted cells.

Rhythmically bursting olfactory bulb external tufted (ET) cells are thought to play a key role in synchronizing glomerular network activity to respiratory-driven sensory input. Whereas spontaneous bursting in these cells is intrinsically generated by interplay of several voltage-dependent currents, bursting strength and frequency can be modified by local intrinsic and centrifugal synaptic input...

متن کامل

External tufted cells: a major excitatory element that coordinates glomerular activity.

The glomeruli of the olfactory bulb are the first site of synaptic processing in the olfactory system. The glomeruli contain three types of neurons that are referred to collectively as juxtaglomerular (JG) cells: external tufted (ET), periglomerular (PG), and short axon (SA) cells. JG cells are thought to interact synaptically, but little is known about the circuitry linking these neurons or th...

متن کامل

Odor response properties of neighboring mitral/tufted cells in the rat olfactory bulb.

Olfactory perception initiates in the nasal epithelium wherefrom olfactory receptor neurons--expressing the same receptor protein--project and converge in two different glomeruli within each olfactory bulb. Recent evidence suggests that glomeruli are isolated functional units, arranged in a chemotopic manner in the olfactory bulb. Exposure to odorants leads to the activation of specific populat...

متن کامل

Activation of postsynaptic GABAB receptors modulates the bursting pattern and synaptic activity of olfactory bulb juxtaglomerular neurons.

Olfactory bulb glomeruli are formed by a network of three major types of neurons collectively called juxtaglomerular (JG) cells, which include external tufted (ET), periglomerular (PG), and short axon (SA) cells. There is solid evidence that gamma-aminobutyric acid (GABA) released from PG neurons presynaptically inhibits glutamate release from olfactory nerve terminals via activation of GABA(B)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 5  شماره 

صفحات  -

تاریخ انتشار 2004